編者按:美國研究人員設(shè)計出一種新型硅太陽能電池方案,通過改變鈍化層材料提高硅電池能量轉(zhuǎn)化效率的上限,可從目前的約29%提升到35%。
美國麻省理工學(xué)院日前發(fā)布公報說,新電池由該校人員和美國普林斯頓大學(xué)等機(jī)構(gòu)同行設(shè)計,利用“單線態(tài)激子裂變”原理,加強(qiáng)對高能光子能量的利用。
在太陽能電池中,光子激發(fā)材料分子釋放電子,產(chǎn)生電流。通常一個光子只能激發(fā)出一個電子,高能光子的剩余能量會以熱量的形式散失。
此前人們發(fā)現(xiàn),在并四苯等某些有機(jī)材料里,一個分子吸收一個高能光子后,可將部分能量轉(zhuǎn)移給另一個分子,最終產(chǎn)生兩個電子,這種現(xiàn)象稱為“單線態(tài)激子裂變”。
理論上,在硅電池上覆蓋一層并四苯,就能用一個高能光子獲得兩個電子,但如何讓“單線態(tài)激子裂變”產(chǎn)生的兩個電子轉(zhuǎn)移到硅材料中是一個關(guān)鍵難題。
為了保證電池效率和耐久性,硅材料必須有表面鈍化層。并四苯中產(chǎn)生的電子必須穿過鈍化層,才能到達(dá)硅材料。相對于電子轉(zhuǎn)移能力來說,目前的鈍化層都太厚了。
新方案的關(guān)鍵是用氮氧化鉿對硅材料進(jìn)行鈍化,得到的鈍化層厚度僅0.8納米(1納米等于十億分之一米),可容許更多電子通過。
研究表明,并四苯每吸收一個光子,平均有1.3個電子可穿過氮氧化鉿鈍化層,轉(zhuǎn)移到硅材料里。
原標(biāo)題:美國科研人員發(fā)現(xiàn)提升光伏電池效率到35%的技術(shù)